Table of Contents
Chapter 1. Executive Summary
1.1. Market Snapshot
1.2. Global & Segmental Market Estimates & Forecasts, 2020-2030 (USD Billion)
1.2.1. Marine Hybrid Propulsion Market, by Region, 2020-2030 (USD Billion)
1.2.2. Marine Hybrid Propulsion Market, by Operation Type,2020-2030 (USD Billion)
1.2.3. Marine Hybrid Propulsion Market, by Components, 2020-2030 (USD Billion)
1.2.4. Marine Hybrid Propulsion Market, by Ship Type, 2020-2030 (USD Billion)
1.2.5. Marine Hybrid Propulsion Market, by Installation, 2020-2030 (USD Billion)
1.3. Key Trends
1.4. Estimation Methodology
1.5. Research Assumption
Chapter 2. Global Marine Hybrid Propulsion Market Definition and Scope
2.1. Objective of the Study
2.2. Market Definition & Scope
2.2.1. Industry Evolution
2.2.2. Scope of the Study
2.3. Years Considered for the Study
2.4. Currency Conversion Rates
Chapter 3. Global Marine Hybrid Propulsion Market Dynamics
3.1. Marine Hybrid Propulsion Market Impact Analysis (2020-2030)
3.1.1. Market Drivers
3.1.1.1. Decreasing Fuel Consumption
3.1.1.2. Growing Environmental Concerns
3.1.2. Market Challenges
3.1.2.1. Heavy Installation Costs
3.1.2.2. Increase in Complexity
3.1.3. Market Opportunities
3.1.3.1. Advancements in Technology
3.1.3.2. Expansion in Renewable Energy Integration
Chapter 4. Global Marine Hybrid Propulsion MarketIndustry Analysis
4.1. Porter's 5 Force Model
4.1.1. Bargaining Power of Suppliers
4.1.2. Bargaining Power of Buyers
4.1.3. Threat of New Entrants
4.1.4. Threat of Substitutes
4.1.5. Competitive Rivalry
4.2. Porter's 5 Force Impact Analysis
4.3. PEST Analysis
4.3.1. Political
4.3.2. Economical
4.3.3. Social
4.3.4. Technological
4.3.5. Environmental
4.3.6. Legal
4.4. Top investment opportunity
4.5. Top winning strategies
4.6. COVID-19 Impact Analysis
4.7. Disruptive Trends
4.8. Industry Expert Perspective
4.9. Analyst Recommendation & Conclusion
Chapter 5. Global Marine Hybrid Propulsion Market, by Operation Type
5.1. Market Snapshot
5.2. Global Marine Hybrid Propulsion Market by Operation Type, Performance - Potential Analysis
5.3. Global Marine Hybrid Propulsion Market Estimates & Forecasts by Operation Type2020-2030 (USD Billion)
5.4. Marine Hybrid Propulsion Market, Sub Segment Analysis
5.4.1. Parallel Hybrid Propulsion System
5.4.2. Serial Hybrid Propulsion System
Chapter 6. Global Marine Hybrid Propulsion Market, by Components
6.1. Market Snapshot
6.2. Global Marine Hybrid Propulsion Market byComponents, Performance - Potential Analysis
6.3. Global Marine Hybrid Propulsion Market Estimates & Forecasts by Components2020-2030 (USD Billion)
6.4. Marine Hybrid Propulsion Market, Sub Segment Analysis
6.4.1. I.C. Engine
6.4.2. Generator
6.4.3. Power Management System
6.4.4. Battery
6.4.5. Gear Box
6.4.6. Others
Chapter 7. Global Marine Hybrid Propulsion Market, by Ship Type
7.1. Market Snapshot
7.2. Global Marine Hybrid Propulsion Market byShip Type, Performance - Potential Analysis
7.3. Global Marine Hybrid Propulsion Market Estimates & Forecasts by Ship Type2020-2030 (USD Billion)
7.4. Marine Hybrid Propulsion Market, Sub Segment Analysis
7.4.1. Container Ship
7.4.2. Passenger Ship
7.4.3. Fishing Vessel
7.4.4. Yacht
7.4.5. Tankers
7.4.6. Others
Chapter 8. Global Marine Hybrid Propulsion Market, by Installation
8.1. Market Snapshot
8.2. Global Marine Hybrid Propulsion Market byInstallation, Performance - Potential Analysis
8.3. Global Marine Hybrid Propulsion Market Estimates & Forecasts by Installation 2020-2030 (USD Billion)
8.4. Marine Hybrid Propulsion Market, Sub Segment Analysis
8.4.1. Line Fit
8.4.2. Retro Fit
Chapter 9. Global Marine Hybrid Propulsion Market, Regional Analysis
9.1. Top Leading Countries
9.2. Top Emerging Countries
9.3. Marine Hybrid Propulsion Market, Regional Market Snapshot
9.4. North America Marine Hybrid Propulsion Market
9.4.1. U.S.Marine Hybrid Propulsion Market
9.4.1.1. Operation Typebreakdown estimates & forecasts, 2020-2030
9.4.1.2. Components breakdown estimates & forecasts, 2020-2030
9.4.1.3. Ship Typebreakdown estimates & forecasts, 2020-2030
9.4.1.4. Installation breakdown estimates & forecasts, 2020-2030
9.4.2. CanadaMarine Hybrid Propulsion Market
9.5. Europe Marine Hybrid Propulsion Market Snapshot
9.5.1. U.K. Marine Hybrid Propulsion Market
9.5.2. Germany Marine Hybrid Propulsion Market
9.5.3. France Marine Hybrid Propulsion Market
9.5.4. Spain Marine Hybrid Propulsion Market
9.5.5. Italy Marine Hybrid Propulsion Market
9.5.6. Rest of EuropeMarine Hybrid Propulsion Market
9.6. Asia-PacificMarine Hybrid Propulsion Market Snapshot
9.6.1. China Marine Hybrid Propulsion Market
9.6.2. India Marine Hybrid Propulsion Market
9.6.3. JapanMarine Hybrid Propulsion Market
9.6.4. Australia Marine Hybrid Propulsion Market
9.6.5. South Korea Marine Hybrid Propulsion Market
9.6.6. Rest of Asia PacificMarine Hybrid Propulsion Market
9.7. Latin America Marine Hybrid Propulsion Market Snapshot
9.7.1. Brazil Marine Hybrid Propulsion Market
9.7.2. MexicoMarine Hybrid Propulsion Market
9.8. Middle East & AfricaMarine Hybrid Propulsion Market
9.8.1. Saudi ArabiaMarine Hybrid Propulsion Market
9.8.2. South AfricaMarine Hybrid Propulsion Market
9.8.3. Rest of Middle East & AfricaMarine Hybrid Propulsion Market
Chapter 10. Competitive Intelligence
10.1. Key Company SWOT Analysis
10.1.1. Company 1
10.1.2. Company 2
10.1.3. Company 3
10.2. Top Market Strategies
10.3. Company Profiles
10.3.1. Cummins Inc
10.3.1.1. Key Information
10.3.1.2. Overview
10.3.1.3. Financial (Subject to Data Availability)
10.3.1.4. ProductSummary
10.3.1.5. Recent Developments
10.3.2. AB Volvo Panta
10.3.3. Rolls-Royce plc
10.3.4. Nigata Power Systems Co., Ltd.
10.3.5. Mitsubishi Heavy Electrics Ltd.
10.3.6. Schottel Group
10.3.7. Siemens
10.3.8. Steyr Motors GmbH
10.3.9. Torqueedo GmbH
10.3.10. Wartsila Corporation
Chapter 11. Research Process
11.1. Research Process
11.1.1. Data Mining
11.1.2. Analysis
11.1.3. Market Estimation
11.1.4. Validation
11.1.5. Publishing
11.2. Research Attributes
11.3. Research Assumption